# Sensoriamento remoto aplicado à caracterização morfométrica e classificação do uso do solo na bacia rio do Peixe/SC

Elfride Anrain Lindner<sup>1</sup> Karla Gomig<sup>1</sup> Masato Kobiyama<sup>2</sup>

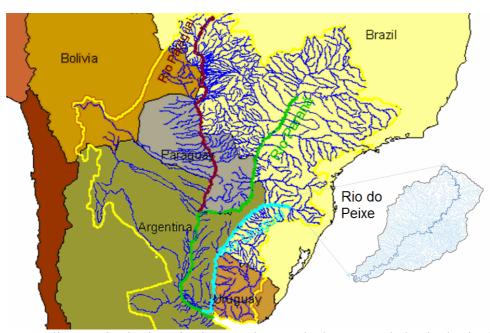
<sup>1</sup>Universidade do Oeste de Santa Catarina - UNOESC Rua Getúlio Vargas, 2125 - 89600-000 - Joaçaba - SC, Brasil elfride.lindner@unoesc.edu.br; eng.karla@yahoo.com.br

<sup>2</sup>Universidade Federal de Santa Catarina – UFSC Centro Tecnológico (CTC) – Campus Universitário – Trindade 88010-970 – Florianópolis – SC, Brasil kobiyama@ens.ufsc.br

**Abstract.** This paper focuses on morphometric characterization and land use of Peixe river/SC watershed based on Landsat 7/ETM+ and CBERS images processing. The catchment area was divided in four sub-basins, corresponding to the gauging flow stations of Rio das Antas, Tangará, Joaçaba and Piratuba. The supporting software was *ArcView GIS* 8.2, geodetic and handheld GPS were used at field. The watershed morphological parameters and hypsometry were calculated resulting in: 5238 km² (area), 416 km (perimeter), 307 km (extension of principal river), altitudes 1350 m (max.), 387 m (min.), 876 m (mean) e 900 m (hypsometry). Compacity coefficient of 1.61, sinuosity index over 63%, slope of 2.8 m/km, 42 hours of time concentration were found. Soil use is distributed in 1.8% urban area, 35.5% grazing, 12% annual crops, 6.3% primary forest, 3.2% forest in regeneration, 40.4% reforestation and 1.1% of water bodies. The area of 482.4 km² (9.2%) has restriction regarding to slope (higher than 30%). All procedures were repeated for the other three sub-basins.

Palavras-chave: satélite images, watershed, morphometry; imagens de satélite, bacia hidrográfica, morfometria.

# 1. Introdução


A qualidade e quantidade dos recursos hídricos de uma bacia hidrográfica são reflexos do uso e ocupação do seu solo. A Carta Européia da Água estabelece que a gestão dos recursos hídricos deve inserir-se no âmbito da bacia hidrográfica natural e não no das fronteiras administrativas e políticas (Costa e Lança, 2001). No Brasil a Lei nº 9.433 de 08 de janeiro de 1997 estabelece em seus fundamentos que a bacia hidrográfica é a unidade territorial para implementação da Política Nacional de Recursos Hídricos e atuação do Sistema Nacional de Gerenciamento de Recursos Hídricos (BRASIL, 1997).

Para a elaboração de projetos de prevenção e defesa contra eventos hidrológicos como estiagens e enchentes, que ocorrem na bacia hidrográfica, os índices morfométricos e a classificação do uso do solo são importantes pressupostos. A análise dos parâmetros morfométricos pelo emprego de técnicas de processamento digital de imagens e Sistema de Informação Geográfica (SIG) constitui um instrumento adequado para a análise ambiental. A compartimentação geomorfológica no ambiente computacional auxilia o diagnóstico ambiental e estudos para a realocação das atividades humanas (Panquestor et al., 2002).

Os objetivos da presente pesquisa foram: delimitar sub-bacias definidas por seções de controle de vazão; quantificar os parâmetros morfométricos de cada sub-bacia; analisar o relevo do solo com o traçado da hipsometria por sub-bacia e classificar uso e ocupação do solo na bacia rio do Peixe/SC necessários aos estudos hidrológicos, tendo por base imagens de satélite e ferramentas SIG.

## 2. Materiais e Métodos

A bacia rio do Peixe destaca-se como manancial de abastecimento público e industrial no meio-oeste de Santa Catarina e está compreendida entre os paralelos S 26°36' e 27°29' e os meridianos W 50°48' e 51°54'. O rio do Peixe é afluente da margem direita do rio Uruguai, que por sua vez, é tributário da bacia do rio da Prata (**Figura 1**).



**Figura 1** – Localização do rio do Peixe/SC no sistema de drenagem da bacia do rio da Prata.

Para contemplar a totalidade da bacia rio do Peixe/SC foi composto um mosaico de quatro cenas de imagem do satélite Landsat 7/ETM+: órbita/ponto 221/078; 221/079; 222/078 e 222/079 de 12/08/2001. A imagem ortorretificada, nível 1 G de correção geométrica, com pixel de 30 m nas bandas de 1 a 7 e de 15 m na banda pancromática – banda 8,) em formato "GeoTiff" de 11 bits foi conformada ao datum horizontal South American Datum 1969 (SAD'69 – IBGE), meridiano central 51° 00'00" W) e ao datum vertical de Imbituba (SC) (Comitê Rio do Peixe, 2002).

No Laboratório de Topografia da Unoesc os arquivos dos mapas digitais planialtimétricos foram processados com utilização do software *ArcView GIS* 8.2 para obtenção de medidas e leituras (Gomig, 2006). Aparelhos de sistema de posicionamento global (GPS) geodésico e de navegação serviram para o georreferenciamento de pontos de interesse. As curvas de nível digitalizadas (escala 1:100.000) foram obtidas do IBGE através da *homepage* da Empresa de Pesquisa Agropecuária de Santa Catarina (Epagri, 2005).

Foram selecionadas quatro estações fluviométricas em razão da série histórica de dados de vazão disponibilizados *online* pela Agência Nacional de Águas (ANA, 2006) identificadas pelo nome e código da respectiva estação fluviométrica, a seguir: Rio das Antas, 72715000; Tangará, 72810000; Joaçaba, 72849000 e Piratuba, 72980000. As áreas de contribuição até a seção de controle de vazão considerada formam as sub-bacias objeto do estudo.

As fórmulas (**Tabela 1**) para obtenção dos parâmetros morfométricos são encontradas em Villela e Mattos (1975), Christofolletti (1980); Pedrazzi (1999); Costa e Lança (2001); Alves e Castro (2003) e Cardoso (2006). As aplicações foram feitas para as sub-bacias: P1 até Rio das Antas, P2 até Tangará, P3 até Joaçaba e P4 até Piratuba, equivalente a toda a bacia do rio do Peixe. A representação gráfica do relevo médio de uma bacia com base nas altitudes médias e áreas entre curvas de nível (hipsometria) foi traçada para as quatro sub-bacias.

**Tabela 1** – Fórmulas de parâmetros morfométricos para a caracterização da bacia e do rio.

| Parâmetros para a bacia                           |                                                                                                 |                                                           |                                                         |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--|--|
| Coeficiente de compacidade ( <i>Kc</i> )          | $Kc = 0.28 \frac{P}{\sqrt{A}}$                                                                  | Coeficiente de forma ( <i>Kf</i> )                        | $Kf = \frac{A}{L^2}$                                    |  |  |
| Índice de circularidade ( <i>Ic</i> )             | $Ic = \frac{12,57 \cdot A}{P^2}$                                                                | Densidade hidrológica ( <i>Dh</i> , rios/km²)             | $Dh = \frac{n}{A}$                                      |  |  |
| Relação de relevo da bacia (Rr, %)                | $Rr = \frac{\Delta a}{L}$                                                                       | Densidade de drenagem ( <i>Dd</i> , km/km <sup>2</sup> )  | $Dd = \frac{\sum L}{A}$                                 |  |  |
| Lado maior retângulo equivalente ( <i>L</i> , km) | $L = \frac{Kc * \sqrt{A}}{1,12} * \left[ 1 + \sqrt{1 - \left(\frac{1,12}{Kc}\right)^2} \right]$ | Lado menor retângulo equivalente ( <i>l</i> , km)         | $l = \frac{P}{2} - L$                                   |  |  |
| Coeficiente de manutenção ( <i>Cm</i> , m²/m)     | $Cm = \frac{1}{Dd} \cdot 1000$                                                                  | Extensão média ( <i>I</i> , km) do escoamento superficial | $I = \frac{A}{4\sum L}$                                 |  |  |
| Índice de Sinuosidade (Is, %)                     | $Is = \frac{100(L - E_v)}{L}$                                                                   | Índice de Sinuosidade (Is, m/m)                           | $Is = \frac{L}{dv}$                                     |  |  |
| Declividade do canal (álveo) (S, m/km)            | $S = \frac{\Delta H}{L}$                                                                        | Tempo de concentração (Giandotti, horas)                  | $Tc = \frac{4\sqrt{A} + 1.5L}{0.80\sqrt{\overline{H}}}$ |  |  |

Onde: P = perímetro; A = área; L = comprimento do canal principal; n = número de canais; Ev = comprimento do canal em linha reta ou dv = distância vetorial;  $\Delta a$  = amplitude altimétrica da bacia,  $\Delta H$  = diferença de altitude (canal) e  $\overline{H}$  = altura média (cota média – cota mínima).

A classificação do uso e ocupação do solo contemplou a utilização de bandas monocromática, razão da escolha de imagem do programa "Satélite Sino-Brasileiro de Recursos Terrestres (CBERS)", ano de 2003, escala 1:25.000, com pixel de 20 m, pela facilidade na identificação de cores dessa imagem pelo *ArcView*. Foi realizado o georreferenciamento da imagem e a classificação supervisionada em sete classes, cada uma delas correspondendo a uma faixa radiométrica. Para a aptidão do solo foram adotadas cinco classes representadas pelas porcentagens de 0 a 5%; de 5 a 10%, de 10 a 30%, de 30 a 100% e acima de 100% correspondendo às áreas de preservação permanente (Gomig, 2006).

## 2. Resultados e Discussão

A **Figura 2** mostra o traçado das quatro sub-bacias inicialmente na imagem e depois no recorte representando as respectivas áreas de drenagem de cada sub-bacia.

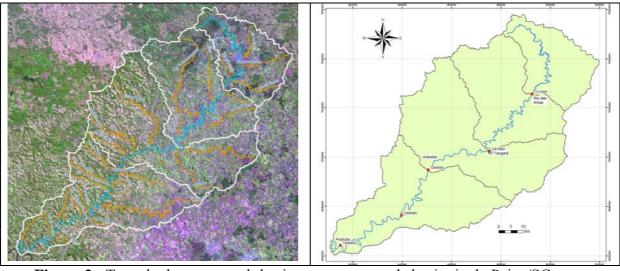



Figura 2 - Traçado das quatro sub-bacias componentes da bacia rio do Peixe/SC.

A altimetria para cada sub-bacia estudada isoladamente pode ser vista na **Figura 3** nas seções de controle de vazão de Rio das Antas (P1), Tangará (P2), Joaçaba (P3) e Piratuba (P4), equivalente a toda a bacia do rio do Peixe.

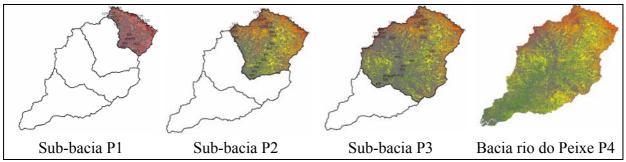
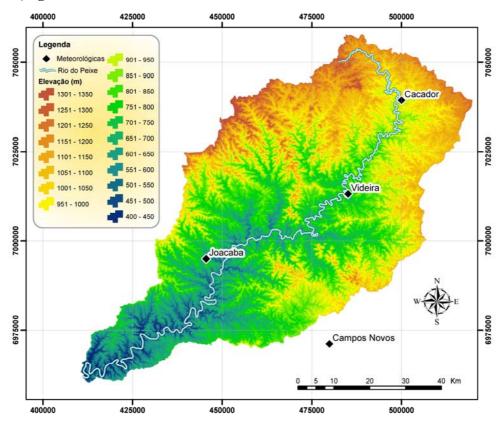




Figura 3 – Delimitação progressiva das sub-bacias componentes da bacia rio do Peixe/SC.

A bacia rio do Peixe/SC é representada pelas cores hipsométricas em curvas de nível de 50 em 50 m (**Figura 4**).



**Figura 4** – Hipsometria indicando os níveis altimétricos na bacia rio do Peixe/SC.

A altitude máxima da bacia é de 1350 m, delimitada pela serra da Taquara Verde na porção noroeste do estado de Santa Catarina. A altitude máxima do canal principal, rio do Peixe é de 1250 m. As curvas hipsométricas das sub-bacias P1, P2, P3 e P4 (toda a bacia rio do Peixe) e respectivas altitudes máximas, mínimas, medianas e médias são mostradas na **Figura 5.** 

O resumo dos parâmetros morfométricos calculados para cada uma das sub-bacias e para a bacia rio do Peixe/SC é apresentado na **Tabela 2**.

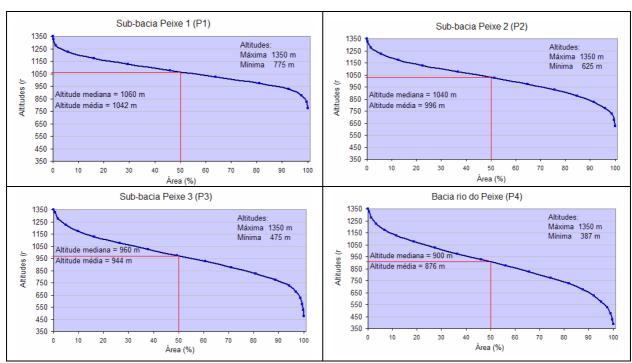



Figura 5 – Curvas hipsométricas das sub-bacias e bacia rio do Peixe e respectivas altitudes.

Tabela 2 - Resumo dos parâmetros morfométricos de cada sub-bacia e bacia rio do Peixe/SC

| Parâmetro                                                                  | P1     | P2      | Р3      | P4      |
|----------------------------------------------------------------------------|--------|---------|---------|---------|
| Área (A, km²)                                                              | 801,07 | 2016,64 | 3721,09 | 5238,39 |
| Perímetro total ( <i>P</i> , km)                                           | 148,33 | 226,16  | 311,60  | 415,74  |
| Extensão do rio principal (L, km)                                          | 87,53  | 156,55  | 198,35  | 307,41  |
| Extensão do rio principal em linha reta (Ev, km)                           | 27,06  | 48,69   | 64,24   | 113,25  |
| Comprimento da malha fluvial ( $\sum L$ , km)                              | 220,46 | 654,10  | 1335,74 | 1957,32 |
| Número de rios (n)                                                         | 20     | 53      | 105     | 156     |
| Diferença de nível na bacia ( $\Delta a$ , m)                              | 575    | 725     | 875     | 963     |
| Diferença de nível no rio ( $\Delta H$ , m)                                | 475    | 625     | 775     | 863     |
| Coeficiente de compacidade (Kc)                                            | 1,47   | 1,41    | 1,43    | 1,61    |
| Coeficiente de forma ( <i>Kf</i> )                                         | 0,10   | 0,08    | 0,09    | 0,06    |
| Índice de circularidade ( <i>Ic</i> )                                      | 0,46   | 0,50    | 0,48    | 0,38    |
| Densidade de drenagem (Dd, km/km <sup>2</sup> )                            | 0,28   | 0,32    | 0,36    | 0,37    |
| Densidade hidrológica ( <i>Dh</i> , rios/km <sup>2</sup> )                 | 0,02   | 0,03    | 0,03    | 0,03    |
| Extensão média do escoamento superficial ( <i>I</i> , km <sup>2</sup> /km) | 0,91   | 0,77    | 0,70    | 0,67    |
| Índice de Sinuosidade (Is, m/m)                                            | 3,2    | 3,2     | 3,1     | 2,7     |
| Índice de Sinuosidade (Is, %)                                              | 69,1   | 68,9    | 67,6    | 63,2    |
| Índice de Pendência, relação de relevo (Rr, %)                             | 6,5    | 4,6     | 4,4     | 3,1     |
| Declividade do rio (S, m/km)                                               | 5,4    | 4,0     | 3,9     | 2,8     |
| Altura média da bacia ( $\overline{H}$ , m)                                | 267    | 371     | 469     | 489     |
| Coeficiente de manutenção ( <i>Cm</i> , m <sup>2</sup> /m)                 | 3634   | 3083    | 2786    | 2676    |
| Retângulo equivalente (L, km)                                              | 61,04  | 90,89   | 126,35  | 178,53  |
| Retângulo equivalente (l, km)                                              | 13,12  | 22,19   | 29,45   | 29,34   |
| Tempo de escoamento (Giandotti, horas)                                     | 19     | 27      | 31      | 42      |

O aspecto não compacto da bacia com valor de Kc oscilando entre 1,41 (P2) e 1,61 (P4) indica a menor propensão à enchentes quando comparado a uma bacia circular (Kc =1). O fator de forma Kf decrescendo de 0,11 a 0,06 confirma o estreitamento no formato da bacia de montante para jusante, indicando menores chances de picos elevados de enchentes na bacia. A característica alongada da bacia é reiterada pelo índice de circularidade máximo de 0,50.

Os baixos valores de densidade hidrológica ( $Dh \approx 0.03 \text{ rios/km}^2$ ) e de drenagem (Dd de  $0.3 \text{ a } 0.4 \text{ km/km}^2$ ) encontrados são devidos à contagem e medição apenas de 156 rios já codificados (Zanette, 2003) na bacia do Peixe. O valor não pode ser comparado com o índice de  $0.5 \text{ km/km}^2$  que resultaria em bacia com drenagem pobre. Esses valores estão bem aquém dos recursos de visualização na imagem digital de 1:25.000 exigindo uma releitura. Na escala 1:100.000 a classificação segundo Strahler (Villela e Mattos, 1975) é rio de "quarta ordem".

A sinuosidade dos canais é influenciada pela carga de sedimentos, pela compartimentação litológica, estruturação geológica e pela declividade dos canais segundo Lana (2001). O índice de sinuosidade obtido de 2,7 a 3,2 m/m enquadra o canal como tortuoso (valores superiores a 2,0). O mesmo índice em valor percentual superior a 60 corresponde a um rio classe V, muito sinuoso conforme classificação de Christofoletti (1981).

A relação de relevo da bacia (*Rr* de 3 a 6,5%) e a declividade do rio (mostram a predominância de áreas onduladas. Uma primeira classificação por faixa de declividade foi realizada com o uso da imagem de satélite CBERS. Essa interpretação incluiu a separação de áreas em cinco faixas de declividade, com um enfoque ambiental. Faixas de 30 a 100% são passíveis de utilização, porém não de parcelamento e as declividade superiores a 100% ou 45° são áreas de preservação permanente (APP). A **Tabela 3** mostra quatro classes em virtude de que as declividades superiores a 100%, ou áreas de preservação permanente, resultaram em 0,04 km², 0,22 km², 0,50 km² e 0,90 km² respectivamente para as sub-bacias de 1 a 4, sem valor percentual.

**Tabela 3** – Aptidão do solo expressa em porcentagem de área em faixas de declividade

| Declividades | Área P1, % | Área P2, % | Área P3, % | Área P4, % |
|--------------|------------|------------|------------|------------|
| 0 - 5%       | 65,6       | 52,7       | 44,1       | 41,6       |
| 5 - 10%      | 12,3       | 13,7       | 14,3       | 14,3       |
| 10 - 30%     | 20,2       | 28,6       | 33,6       | 34,9       |
| 30 - 100%    | 1,9        | 5,0        | 8,0        | 9,2        |

A **Tabela 4** sumariza os valores percentuais de uso real do solo encontrados em cada uma das sub-bacias do rio do Peixe através da classificação supervisionada de sete temas, com o uso de imagem do satélite CBERS.

**Tabela 4** – Uso real do solo, áreas obtidas com uso de imagem do satélite CBERS.

| Classes         | Área P1 (%) | Área P2 (%) | Área P3 (%) | Área P4 (%) |
|-----------------|-------------|-------------|-------------|-------------|
| Mata Nativa     | 1,7         | 5,7         | 6,5         | 6,3         |
| Transição       | 1,8         | 3,7         | 3,4         | 3,2         |
| Reflorestamento | 48,3        | 45,2        | 41,8        | 40,4        |
| Campo           | 31,1        | 30,3        | 33,2        | 35,5        |
| Cultura Anual   | 12,8        | 11,8        | 12,1        | 11,7        |
| Corpos hídricos | 1,8         | 1,7         | 1,8         | 1,8         |
| Mancha Urbana   | 2,5         | 1,6         | 1,2         | 1,1         |

A sub-bacia de montante (P1) destaca-se pela área destinada ao reflorestamento e às culturas anuais, em detrimento da vegetação nativa. Também contempla o maior conglomerado urbano, representado pela cidade de Caçador (**Figura 5**). A sub-bacia P3 proporcionalmente atinge os melhores valores de preservação da mata nativa e em transição.

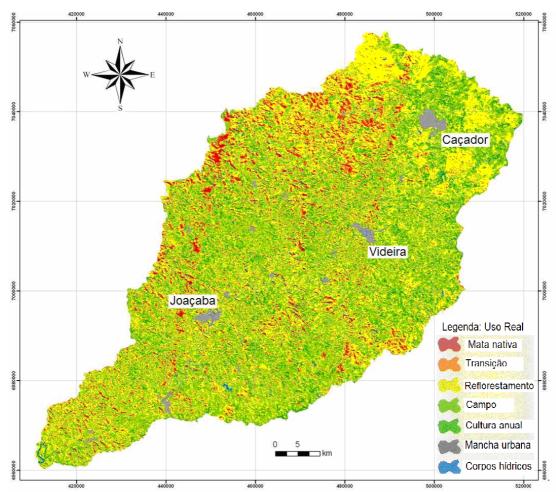



Figura 5 – Uso real do solo em sete classes na bacia rio do Peixe/SC.

Para a bacia rio do Peixe a soma da mata nativa e em regeneração alcança a percentagem de 9,5% (2002), inferior ao valor estadual de 29% em 1992 (Fatma, 1995) de florestas primárias e secundárias. Em comparação são ocupados 40,4% da área em reflorestamento (2002) contra a média de 4% em Santa Catarina (1992) (Fatma, 1995).

# 5. Conclusões

Os parâmetros morfométricos devem ser considerados no conjunto para bem caracterizar a bacia rio do Peixe. A comparação dos resultados obtidos indica que a qualidade de resolução das imagens de satélite Landsat 7 e CBERS e os recursos do sistema de informações geográficas permitem ampliar a leitura de informações, não esgotadas no presente trabalho.

A imagem CBERS facilita a identificação de cores pelo *ArcView*. A classificação do uso e ocupação do solo indicou para a bacia rio do Peixe: 331 km² de mata nativa (6,3%); 170 km² de mata em regeneração (3,2%); 2.115 km² destinados ao reflorestamento (40,4%); 1.858 km² de campo (35,5%); 612 km² aproveitados para cultura anual (12%); 92 km² ocupados por mancha urbana (1,8%) e os corpos d'água inundam a área de 60 km² (1,1%).

As faixas de declividade para a bacia foram: de 0 a 5%, 2.179 km² (41,6%); de 5 a 10%, 747 km² (14,3%); de 10 a 30%, 1.830 km² (34,9%); de 30 a 100%, 481 km² (9,2%) e com mais de 100% de declividade, ou seja, área de preservação permanente, 0,90 km². O ensaio deverá ser repetido para outros intervalos recomendados (Cardoso, 2006) para refinar a classificação por declividade.

## Referências

Alves, J. M. P; Castro, T.A. Influência de feições geológicas na morfologia da bacia do rio do Tanque (MG) baseada no estudo de parâmetros morfométricos e análise de padrões de lineamentos. **Revista Brasileira de Geociências**, V. 33, 2003.

Comitê rio do Peixe. **Sistema de Informações Geográficas (SIG) aplicados à Bacia Hidrográfica do rio do Peixe.** Convênio SDM/UNOESC 2801/2002-0. Joaçaba: SDM/UNOESC, 2002.

Costa, T. da; Lança, R. **Capítulo I. Hidrologia de Superfície**. Escola Superior de Tecnologia. Área de Engenharia Civil, Núcleo de Hidráulica e Ambiente. Universidade do Algarve. Faro, Portugal, 2001.

Gomig, K. Classificação do uso e ocupação do solo na bacia hidrográfica do rio do Peixe/SC, utilizando imagem de satélite. Estágio supervisionado II. Graduação em Engenharia Civil. Universidade do Oeste de Santa Catarina. Joaçaba, 2006.

Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri). **Mapas digitais de Santa Catarina.** 2005. Disponível em:

<a href="http://ciram.epagri.rct-sc.br/ciram/comum/produtos/mapoteca">http://ciram.epagri.rct-sc.br/ciram/comum/produtos/mapoteca</a> digital/index.jsp>. Acesso em: 5 abr. 2005.

ENGESAT. **Ficha Técnica Resumida – C-BERS 1 e C-BERS 2 – Satélite Sino-Brasileiro de recursos terrestres.** Disponível em: <a href="https://www.engesat.com.br/satelites/c-bers">www.engesat.com.br/satelites/c-bers</a>: Acesso em: 14 jun. 2006.

Fundação de Meio Ambiente (Fatma). **Cobertura Vegetal do estado de Santa Catarina**. CIASC. Fatma. Cdrom. Florianópolis. 1995.

Lana, C. E.; Alves, J. M. de P.; Castro, P. de T. A. **Análise morfométrica da bacia do Rio do Tanque, MG - Brasil.** Rem: Rev. Esc. Minas. [online]. Apr./June 2001, vol.54, no.2 [cited 16 June 2006], p.121-126. Disponível em: <a href="http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0370-44672001000200008&lng=en&nrm=iso">http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0370-44672001000200008&lng=en&nrm=iso</a>. ISSN 0370-4467. Acesso em 25 abr. 2006.

Lazari, J. A. P. **ST 306 Hidrologia e Drenagem – Hidrografia**. CESET-UNICAMP. Centro Superior de Educação Tecnológica-Universidade Estadual de Campinas. 2004. Disponível em: <a href="http://www.ceset.unicamp.br/~joaquiml/ST%20306/hidrografia-bacia.doc">http://www.ceset.unicamp.br/~joaquiml/ST%20306/hidrografia-bacia.doc</a>: Acesso em: 15 abr. 2006.

Panquestor, E. K; Carvalho Júnior, O. A. de; Leal, L. R.; Andrade, A. C. de; Martins, É. S.; Guimarães, R. F. Associação do processamento digital de imagens ao uso de parâmetros morfométricos na definição de unidades de paisagem da bacia do rio Corrente – BA. Espaço & Geografia, Vol.5, No1 (2002), 87:99 ISSN: 1516-9375

Pedrazzi, J.A. **FACENS – Hidrologia Aplicada**. Disponível em:

<a href="http://www.facens.br/site/alunos/download/hidrologia">http://www.facens.br/site/alunos/download/hidrologia</a>. Acesso em 15 fev. 2004.

Santa Catarina. SDM – Instituto CEPA. *Plano de gestão e gerenciamento da bacia do rio Araranguá. Análise das Características Físicas*. Florianópolis, 1997. Disponível em:

<www.sirhesc.sds.sc.gov.br/sirhsc/baixararquivo.jsp?id=113&NomeArquivo=VOL3.pdf>. Acesso em 2006.

Zanette, A. P. Codificação dos cursos d'água do estado de Santa Catarina. Projeto FATMA/GTZ de Cooperação Técnica Brasil/Alemanha. Florianópolis, 2003. CD-ROM e impresso.